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Abstract 

CDC (Change Data Capture) solutions let us see every little change that happens on a database.  
It is possible to turn a CDC change register into a set of temporal tables that can be pushed through 
ETL to form a fully temporal data warehouse, where any change in the source is represented in the 
output tables (like facts or dimensions). In this paper we shortly describe our approach to temporal 
data warehousing and show how can the data from CDC can eƯiciently be extracted, transformed  
and loaded into the serving layer tables. 
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Introduction 
What is a temporal data warehouse? 
A temporal data warehouse is a specialized type of a data warehouse designed to manage and analyse 
time-varying data. Unlike traditional data warehouses, which typically store the most current or 
aggregated state of data, a temporal data warehouse retains historical changes, enabling users to track 
how data evolves over time. 

In this paper I will limit the time aspect of a temporal data warehouse just to the transaction time (TT), 
which is the time when the data is present in the source. Following [Mahmood, 2010] I will be referring 
to the timeline of transaction times as an activity timeline with active_from and active_to as the period 
boundaries. An information is active at a given moment if it is present in the source at that moment. All 
other dates present in the tables will be treated as attributes, including the validity times (VT). 
Presence of both validity timeline and activity timeline will result in a bi-temporal table and will pose 
other challenges, but this is out of the scope of this paper. 

Picture a CRM system that a DWH can access through a relational database. The current state 
of a given area of the system – let’s say customer information screen – is represented in a 
database table. If an employee changes the address of the customer, this will overwrite the 
previous address and only the new address will be visible in the source table and accessible 
by the DWH. The old address is no longer active in the source after the change has been done. 

Not all information behaves like this. Let’s say that a customer has a default discount rate that 
is valid in a given year. The CRM interface will show a table of years with respective discount 
rates. All this information will be stored in the database and will be visible to the DWH at any 
time. The 2023 discount might be not valid in 2024, but from the temporal data warehouse 
perspective both are active because both are still present in the source. 

A common approach in data warehousing is to keep the history of record activity in a persistent staging 
area, but use only the current records of the staging tables to feed the subsequent layers of the data 
warehouse. All non-staging tables in such a data warehouse contain only the current state of 
information. 

In a temporal data warehouse as described here, the changes that are present in the staging tables are 
propagated to other layers and are visible in the serving layer (e.g. facts and dims). As a result, the 
users of the data warehouse can see how the information they care about has changed over time. 

 

Why would you want a temporal data warehouse? 
Short answer – it gives you time travel capability. In our version of a temporal data warehouse, you can 
travel back in time to see how the data in the facts, the dimensions or even the data marts would look 
like if you were to run the ETL at any moment in the past and this is simply available in all the tables in 
the data warehouse after the daily refresh. 

A non-temporal data warehouse is good enough for most purposes. The management reporting, 
campaign scoring, capacity management – these are the types of use cases in which the general 
picture is usually suƯicient and sub-permille erroneous data does not normally cause substantial 
harm. 
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On the other hand, if you use the data warehouse for auditing and compliance purposes, it might be 
crucial to make sure that every datapoint is correctly represented in your serving layer. You might 
recognize questions like “On the screen in the application XYZ I see THIS and I expect to see THIS in the 
FCT_XYZ table as well, but I see SOMETHING ELSE instead.” It used to bother me to have to reply with 
“The data has changed and I can no longer see what you saw”. In the temporal data warehouse, you are 
able to see the timeline of all the changes of the source data at any ETL stage, which makes answering 
these types of questions possible. 

The ability to answer such questions becomes absolutely crucial when your source systems struggle 
with data quality issues. You can easily track down any suspicious changes in the data mart to the 
staging tables even if the change is already in the past.  

You can also build checks to show if your data warehouse represents the source correctly to a single 
data point, because your data warehouse can tell you how many records were there in the database 
and in the serving-layer tables at any time in the past. 

Another benefit of a temporal data warehouse is the ability to serve consistent data in a scenario 
where the data is refreshed throughout the day from diƯerent sources at diƯerent moments. Let’s say 
that we need to refresh financial data every hour for the finance department, but the logistics needs to 
have it near-real time. In a regular data warehouse, all is fine until we need to present some logistic 
information in the reports for finance – if we just combine our serving layer tables, we will present 
finance with an inconsistent view. In a temporal data warehouse, we can just select the logistic data 
that was active at the time of the last financial data refresh. 

 

Updating a temporal data warehouse 
There is a number of ways to create temporal data in the data warehouse. One way is state processing. 
This approach mentioned in [Rahman, 2008] suggests running frequent updates of the data warehouse 
while keeping track of what has changed in the output tables. That means that the current status of the 
data is being loaded every time and that the timeline is being built at the end of the process, while 
loading the data to the output. Technically the loading process is no diƯerent from the persistent 
staging, it is just applied at every level of the data warehouse. 

The granularity of the timeline is therefore limited to how quickly can a refresh be run. Another serious 
drawback of this method is that whenever there is an issue with the data warehouse refresh process, 
the granularity changes – due to the temporary malfunctions of ETL process, we do in fact loose data 
that we would otherwise have. 
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What is CDC (Change Data Capture)? 
CDC solution is used to identify and track changes made to the data in a database or a system in order 
to propagate it to other systems. It is primarily used in data integration and replication. 

As an example, let’s use Microsoft SQL Server CDC solution. When we enable CDC on a given table in 
SQL Server database, a new table is created that keeps the history of changes for a given period (let’s 
say – one week retention). Apart from all the columns that are present in the original table, the CDC 
change-table will have 6 extra columns (as described in the docs), out of which we will use just 3: 

column name Description example value 
__$start_lsn log sequence number (LSN) associated with the commit 

transaction for the change; this value can be looked up in another 
CDC table - lsn_time_mapping to get the transaction begin and 
end times 

0x0000B756003D1C480006 

__$end_lsn not used NULL 
__$seqval sequence of the operation as represented in the transaction log 0x0000B756003D1C480003 
__$operation data manipulation language (DML) operation associated with the 

change  
1 = delete (a record state just before deletion),  
2 = insert (a record state just after insert), 
3 = update (a record state just before update), 
4 = update (a record state just after update) 

2 

__$update_mask a bit mask based upon the column ordinals of the change-table 
identifying those columns that changed 

0x03FFFFFFFF 

__$command_id order of operations within a transaction 1 
 

As you can see CDC preserves all the changes of our source tables on a transaction level. All the 
operations performed on a record are stored and kept for a set retention period. There can be multiple 
changes of a given record within a day, or even within one second. It is up to us to determine the time 
granularity required for our data. For practical reasons we tend to use one second for granularity, which 
means that while reading from a CDC change table, if we find more than one change of a given record 
within one second (be it in multiple transactions or in one), we will only take the last record of such 
group, rounding the transaction end timestamp to the next full second to get our point-in-time 
timestamp. This way we can avoid the necessity to use milliseconds in order to show the timeline 
correctly and the one-second granularity is suƯicient for all purposes we have stumbled upon so far. 

When reading from CDC to the staging we will create a timeline of all changes that happened since the 
last time our data warehouse has successfully refreshed (marking the beginning of the increment 
window) until the start of the current run (the end of the increment window). The duration of the 
window can be an hour, a day or a week. No data is lost unless the window duration is longer than the 
retention period set for CDC. Even if the refresh frequency is low, all the changes will still be processed 
and stored within a staging table – this is made possible by timeline processing.  
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Moving all the changes from CDC to STAGING 
Within this approach all the data manipulation processes operate on the activity timelines instead of 
just on the current states. Let’s convert CDC data into a timeline. Let’s take a CDC table example: 

 

We do not need to use the type-3 records (before update). Also, when an insert and an update on the 
same record is done within one transaction, we can disregard all records except for the last one. 

The time interval representation will be from-inclusive to-exclusive (or closed-open as described in 
[Kvet, 2013]), which means that the from-timestamp will be the first moment the record is active and 
the to-timestamp will be the first moment the record is no longer active (it is thus the same as the 
from-timestamp of the following activity period) 

Based on that, the grayed-out rows will be disregarded and the remaining four records will result in four 
timeline records: 

 

 

row explanation 
1 the timeline begins at 10:00 (an insert CDC-row 1) and ends at 14:00, because there is an update of 

the same key (CDC-row 9) 
2 the timeline begins at 14:00 (an update CDC-row 9) and ends in the year 9999 which is an agreed 

end-of-time indication. It means that the record remains active 
3 the timeline begins at 11:00 (an update CDC-row 3) and ends at 13:00 (a delete CDC-row 7) 
4 the timeline begins at 12:00 (an update CDC-row 6) and ends in the year 9999 

 

Note that the invoice date (column: date) is in no way related to the activity timeline. A value of the 
date field is a non-technical column and is just treated as an attribute of an invoice. 

Also note that the unique key of the resulting table is now composite and is composed of invoice_id 
and active_from columns. In order to simplify communication, we tend to speak about a “timeline key” 
of a table, which is just what would the PK of a given table be if not for the timeline aspect. For the rest 
of the paper whenever a key of a table is mentioned, we actually mean the timeline key.  
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Such timeline will be applied on a staging table as an increment following this formula: 

 

Example: 

Before the staging was loaded, we had two records in the persistent staging table (OUTPUT): 

 

When we apply the changes from our CDC table (INPUT)… 

 

…this is what we should see in the persistent staging table (OUTPUT after load): 

 

 

row explanation 
1 the active_from value is unchanged compared to the previous state, but the active_to has been 

updated from year 9999 to 11:00, because this was the moment this key got an update 
2 this is the update mentioned above and is inserted from the input 
3 this key was not present in the input at all, so this record remains unchanged 
4 inserted from the input 
5 inserted from the input 
6 inserted from the input 

 

For each key value present in the input do: 

 If there are no records with this key value in the output,  
add all records from the input to the output. 

 If there are records with this key value in the output, overwrite the 
corresponding part of the timeline of the output with the timeline of the input 
(leaving all values prior to the first input active_from intact in the output, 
replacing all values after that moment with the input timeline). 

Leave all records that are present in the output, but absent in the input, intact in 
the output. 
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Timeline processing 
We have just seen how several changes of one record can be recorded in the persistent staging table. 
The same principle will be used throughout the data warehouse. At each stage of processing all the 
tables will have a timeline. These tables will need to be aggregated or joined with each other in order to 
bring the data to the format defined for the serving layer. All these operations need to process the 
timelines correctly. 

Below we will show two examples of timeline operations. In order to make this more readable we will 
operate on days instead of seconds/hours, but the same principle would apply with any time 
granularity. 

 

Temporal aggregation example 
Let’s say we want to aggregate the payments on invoices. In our input we have 3 diƯerent payments for 
the same invoice (invoice_id = 201). 

 

row explanation 
1 a payment inserted on Monday that never changed 
2 the second payment also added on Monday, which value was later corrected on Wednesday 
3 the corrected record of the second payment 
4 the third payment that was inserted on Thursday 

 

The question is: How much has already been paid for each invoice? 

We are aggregating by invoices, so for the group-by column we will use the invoice_id and this 
becomes our timeline key of the output table. The payment_id won’t appear in the output dataset. The 
column sum_value, will contain sum(value). 

And this is the output: 

 

row explanation 
1 the sum of €20 + €30 = €50 – the only 2 records active in this period 
2 the sum of €20 + €40 = €60 – the only 2 records active in this period 
3 the sum of €20 + €40 + €50 = €110 – the 3 records active after 2024-01-04 
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Temporal join example 
Temporal join operation combines the timelines from both tables resulting in one common timeline 
where the changes of the both joined tables are represented in the output. Let’s take a table with 
invoices as our LEFT input table. It contains one invoice that changes its status over time. The key of 
this table is invoice_id. 

 

As the RIGHT input table let’s take the payments: 

 

row explanation 
1 the first payment that was added on Wednesday and which value was later corrected on Thursday 
2 the corrected record of the first payment 
3 the second payment that was inserted on Saturday 

 
The key of the LEFT table is invoice_id, the join condition is: LEFT.invoice_id = RIGHT.invoice_id. 
The output is as follows: 

 

row explanation 
1 in the first period the status of the invoice is DRAFT and there is no payment yet, therefore the 

payment columns are empty 
2 the change of the status is represented in the output; still there are no payments, so the payment 

columns stay empty 
3 the status remains SENT, but there is now a payment nr 112 of €30 
4 the status is still SENT, but the value of the payment changes to €40 because of the correction; until 

now we still have one record per period 
5 the value of the payment 112 remains €40, but now the status changes to PAID, so the previous 

record is closed and the new record is added 
6 within the same period another payment (113) is registered; the status of the invoice in this period is 

PAID 
 
Note that there are now 2 active records within the same period. The timeline key of the output is 
therefore composite and consists of 2 columns: invoice_id and payment_id. 
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These and other temporal operations can be achieved in multiple ways, but regardless of the means 
used, they are complex and performance-heavy. In order not to butcher the CPUs of our data 
warehouse system, it becomes essential to load the data incrementally. 

 

Incremental load 
Incremental load is used to limit the amount of data that needs to be processed daily. As the data that 
was known yesterday should be already processed by the data warehouse run of yesterday, we should 
– in theory – process only the data that has been altered today (since the last run). 

In practice this is not possible as some data that has changed today needs to be combined with the 
data that has not been altered, so we cannot just take only new data and process it, as this would lead 
to incorrect results. 

In the temporal data warehouse, we have developed two approaches to incremental load which can be 
applied separately or together. We call these the two dimensions of incremental load: The time 
dimension and the key dimension. 

 

Incremental load – the time dimension 
Full history of all changes of all tables is stored in the temporal data warehouse. The changes that 
happened before the last run of the ETL process were already processed, so there is no need to 
process them again. In order to do that, while selecting data from STAGING, we cut the timeline of 
processed entities so that it begins at the moment of the previous successful data warehouse run. This 
is eƯectively a selection that filters out all the records that stopped being active before that moment. In 
addition, for all records that were active at the time of the last successful run we adjust the 
active_from date so it starts at the beginning of the last successful run. 
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Let’s say that this is our staging table (we’re using days to make the example more readable, but in 
practice the data is refreshed daily or even more frequently than that): 

 

After selecting the data from this table, we will have just 3 records to process: 

 

row explanation 
1 in this row the active_from date has been altered – the timeline has been cut; the record will be 

processed further 
2 this row is not selected for processing because it lies fully before the last successful run, therefore 

all the data that it carries should already have been processed 
3 in this record the active_from date is altered (just like in record 1) 
4 this one is a new row that appeared after the last successful run, so it is selected without any 

alterations 
5 this row lies fully before the last successful run (apparently has been deleted from the source 

database), so it is not selected (just like record 2) 
 

The data selected this way will be processed using timeline operations and eventually inserted in the 
output tables. The way it is inserted is in principle the same as the one described above for loading a 
STAGING table (see: Moving all the changes from CDC to STAGING, page 6). 

The time dimension limits the number of records slightly, but we still select all the rows that are 
currently active in the tables of the source system – that usually means all the entities. It can happen 
that a record which in the source is active, but has not changed since the last data warehouse run. In 
such case the data in our serving layer table is still correct and does not require an update. 
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Incremental load – the key dimension 
The key dimension of the incremental load is a mechanism that selects only the keys that have been 
changed since the last successful data warehouse run.  

There is one problem though – we cannot simply select just the new records from all source tables. 
When two such tables are joined and one of them has new records for a given key and the second one 
does not (but has an existing active record), then the join of these two tables filtered on only the 
changed records will result in missing values for all the columns coming from the second table for this 
given key. That is incorrect. 

In order to be able to join the data from diƯerent tables, while building a pipeline we need to select a 
key that we will use to select on to limit the entities changed last run. Each run we need to select the 
same subset of keys from all the input tables of the given pipeline. 

 

This will result in two tables INVOICES‘ (prime) and PAYMENTS‘, that contain selection of the 
INVOICES that have had some changes since the last run. These tables can be then joined, aggregated 
and eventually the result would be loaded to the serving layer table (say: FCT_INVOICE) using the 
mechanism described on page 6 (Moving all the changes from CDC to STAGING). 

We found that combining these two dimensions of incremental load suƯiciently limits the strain on the 
performance which is added by the temporality of the data warehouse. 

 

Conclusion 
We proposed a way to eƯiciently load changes from CDC tables through staging to the serving layer of 
a data warehouse without any hard restriction in the time granularity. We have illustrated the 
mechanism of turning the CDC registry to a table of timelines. We have proposed a data warehouse 
update approach based on transforming temporal tables at any stage of the ETL. We gave a couple of 
examples of such transformations. Finally, we have proposed the way to implement an incremental 
load mechanism in such a data warehouse. This paper is a description of a generic concept. In future 
publications we plan to dive into details of diƯerent mechanisms that make up our proposed data 
warehouse as well as to explore diƯerent implementation possibilities. 
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Resources 
Code repository Code repository with some SAS Data Integration Studio transformations for the 

implementation of a temporal data warehouse in SAS: 
https://github.com/dadrico/public 
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